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Abstract

Aim: Stacked species distribution models (SDMs) are an important step towards estimating species

richness, but frequently overpredict this metric and therefore erroneously predict which species

comprise a given community. We test the idea that developing hypotheses about accessible area a

priori can greatly improve model performance. By integrating dispersal ability via accessible area

into SDM creation, we address an often-overlooked facet of ecological niche modelling.

Innovation: By limiting the training and transference areas to theoretically accessible areas, we are

creating more accurate SDMs on the basis of a taxon’s explorable environments. This limitation of

space and environment is a more accurate reflection of a taxon’s true dispersal properties and

more accurately reflects the geographical and environmental space to which a taxon is exposed.

Here, we compare the predictive performance of stacked SDMs derived from spatially constrained

and unconstrained training areas.

Main conclusions: Restricting a species’ training and transference areas to a theoretically accessible

area greatly improves model performance. Stacked SDMs drawn from spatially restricted training

areas predicted species richness and community composition more accurately than non-restricted

stacked SDMs. These accessible area-based restrictions mimic true dispersal barriers to species and

limit training areas to the suite of environments to those which a species is exposed to in nature.

Furthermore, these restrictions serve to ‘clip’ predictions in geographical space, thus removing over-

predictions in adjacent geographical regions where the species is known to be absent.
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1 | INTRODUCTION

Conservation and biodiversity research worldwide has generally been

limited and biased towards biodiversity hotspots and regions that are

relatively easy to access and well known (Ponder, Carter, Flemons, &

Chapman, 2001), but gaps in our knowledge of the area of distribution

of species (the Wallacean shortfall) are substantial (Whittaker et al.,

2005). Most of what is known about species distributions is affected

by this incomplete sampling and is therefore spatially limited and biased

from the outset (Reddy & D�avalos, 2003). Species distribution models

(SDMs) are seen as an important method towards estimating a species’

distributional extent (Feria & Peterson, 2002; Peterson et al., 2011;

Sober�on & Peterson, 2005). Moreover, SDMs can be aggregated and

stacked for multiple taxa to predict richness and community composi-

tion for a given locality (Aranda & Lobo, 2011; Graham & Hijmans,

2006; Peterson et al., 2011), although this method is still being devel-

oped (Calabrese, Certain, Kraan, & Dormann, 2013).

One of the most common ways of estimating a species’ distribu-

tion is by creating an ecological niche model (ENM). ENMs use climatic

(or other environmental) associations of observed localities to estimate

the environmental space (i.e., ecological niche) occupied by the species;

this ‘niche model’ can then be projected into geographical space to find

areas with environments similar to those where the species has been

observed (i.e., ‘homocline matching’; Peterson et al., 2011). This repre-

sents a potential distribution based on an index of environmental

similarity, and not a ‘probability of presence’ (Peterson et al., 2011;
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Sober�on & Peterson, 2005). Many algorithms can be used to provide

such indices of environmental similarity (Chefaoui & Lobo, 2008; Elith

et al., 2006, 2011; Peterson et al., 2011; Phillips et al., 2009), as

reviewed by Franklin (2010), which in turn can then be thresholded to

create binary correlative models that predict a species’ potential distri-

bution in geographical space (Liu, White, & Newell, 2013).

When true absence data are available, it is possible to estimate

statistically the probability of presence given an environmental combi-

nation (Pearce & Boyce, 2006), and therefore an estimation of the

actual occupied area can be derived. In such cases, the projection of the

niche model to geographical space represents a hypothesis about the

actual distribution of the species (a realized species distribution model).

It is also possible to estimate an occupied area by creating a ‘hybrid’ or

‘process-oriented’ model that combines a mechanistic model of the fun-

damental niche with a dispersal kernel and with inferred interactions

with syntopic species (Kissling et al., 2012), although this method

requires substantial ancillary data to parameterize models. Alternatively,

even without explicit absence data, it is also possible to post-process

the predictions of presence-only correlative niche models that estimate

potential areas by resorting to hypotheses about dispersal capacities to

‘clip’ estimates (Sober�on, 2010). This method is based on the ideas of

the BAM diagram (Sober�on & Peterson, 2005), which relate a species’

biotic interactions (B) to its abiotic environment (A) and to its motility

and accessible area (M). In this framework, hypothesized dispersal limi-

tations (an M hypothesis) can be established based on biogeographical

considerations (Sober�on, 2010), thus clipping potential distribution to

the M hypothesis as a proxy for the species’ historical dispersal area.

Addressing a species’ biogeographical history in this way removes

assumptions of local extinction or potential colonization, and thus con-

strains a species’ model to a known accessible area.

If one is interested in the composition of an entire fauna or flora,

‘stacks’ of thresholded individual SDMs can be used to generate a list.

It should be noted that a floristic or faunistic list is in itself a ‘thresh-

olded’ object (i.e., a list of presences and implicit absences determined

by a likelihood of presence); therefore, some form of thresholding is

inherent to list estimation. Thresholded potential distribution models

represent a set of coordinate-referenced presence and absence predic-

tions that can be spatially aligned with cells to create presence–

absence matrices that predict the community composition and species

richness at any given locality (D’Amen, Dubuis et al., 2015; D’Amen,

Rahbek, Zimmermann, & Guisan, 2015; Dubuis et al., 2011; Peterson

et al., 2011; Pineda & Lobo, 2009). It is important to note, however,

that by the above arguments, unless the modelling process is specifi-

cally aimed at estimating the occupied area, presence-only correlational

models will approximate the larger potential area (Sober�on, 2010). Pre-

vious studies that use presence-only data and unclipped SDMs to esti-

mate community composition should be expected to overpredict

richness, despite being correlated with observed species numbers

(Calabrese et al., 2013; Pineda & Lobo, 2009). Alternative species rich-

ness estimates have been derived from macroecological models, but

these estimates lack the ability to predict community composition and

are therefore limited in their usefulness when a list is needed (e.g.,

when the presence of a particular assemblage of rare or threatened

species is sought; Calabrese et al., 2013; Dubuis et al., 2011).

Whether stacks of binary SDMs can create useful, realistic pres-

ence–absence matrices is still an open question. Some attempts have

been made to improve SDM accuracy by means of adding information

(e.g., absences) in high-quality presence–absence data (D’Amen,

Rahbek, et al., 2015; Guisan & Rahbek, 2011). Even using presence–

absence data, the overall feasibility of these procedures has been ques-

tioned (Calabrese et al., 2013; Gast�on & García-Vi~nas, 2013), and such

methods are data demanding if aimed for large taxonomic groups or

geographical scales. It has become apparent that when the purpose is

to estimate the realized distribution of a species, using methods that

fail to incorporate the dispersal constraints is likely to bias predicted

distributions by including suitable environments that are inaccessible to

study taxa (Sober�on & Peterson, 2005).

In this study, we resort to the method of hypothesizing M regions

to clip ENM outputs (estimated from presence-only data) to ‘reduce’

the larger estimated potential area to a hypothesis about the accessible

area containing the occupied area. We compare two sets of SDMs (one

clipped, the other unclipped) to address how M affects the predictive

ability for both species richness and community composition. An initial

set of ENMs was estimated using classic presence-only approaches

that use a calibration area that is either a continent or the area accessi-

ble to the entire clade (i.e., an unconstrained model). The second set of

models aims to estimate occupied niches by calibrating ENMs within

species-specific Ms defined by expert range maps, biogeographical

areas and reliable digitally accessible knowledge (Barve et al., 2011;

Owens et al., 2013; Sober�on & Peterson, 2005). This procedure also

‘clips’ the predictions in geographical space, explicitly incorporating abi-

otic barriers (when definable) and implicitly incorporating biotic barriers

to range expansion. This M-based approach, which has never been

applied to a large group of organisms, should yield estimates closer to

the occupied area rather than the potential area for individual species,

and thus should produce better estimates of realized species richness

and community composition from the stacked models.

2 | METHODS

2.1 | Data and test locality description

Primary occurrence data were downloaded for all hummingbird species

(Aves: Trochilidae) for which data were available from the Global Biodi-

versity Information Facility (GBIF; Global Biodiversity Informatics Facil-

ity, 2014) using the R 3.0.0 (R Core Team, 2015) package rgbif

(Chamberlain, Ram, Barve, & Mcglinn, 2015) and directly from eBird in

December 2013 (eBird, 2012; Sullivan et al., 2009). We followed the

taxonomy of the 2013 International Ornithological Congress checklist

(Gill & Donsker, 2013) with the exception of the west Ecuadorian

Anthracothorax prevostii iridescens, which was treated separately from

other A. prevostii populations (see discussion in Ridgely & Greenfield,

2001). eBird data were parsed to remove all records that listed distan-

ces > 10 km or > 900 min of effort as a precaution against data drawn

from checklists that covered multi-day effort or checklists covering
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areas larger than the locality of interest (e.g., observers often cluster

data near cities, well-known sites or country/state centroids). Merged

eBird and GBIF data had duplicate localities removed and remaining

localities rarefied to a minimal inter-point distance of 10 km for each

species in R 3.0.0 (J. D. Manthey, unpublished code 2015; R Core

Team, 2015; Vavrek, 2011). We performed the following procedures to

remove erroneous localities manually. Localities were compared with

existing range maps from online databases (BirdLife International,

2014; Ridgely et al., 2005), regional field guides (Hilty, 2003; Howell &

Webb, 1995; Raffaele, Wiley, Garrido, Keith, & Raffaele, 2003; Ridgely

& Greenfield, 2001; Schulenberg, Stotz, Lane, O’Neill, & Parker, 2007)

and species accounts in the Handbook of the Birds of the World (Schuch-

mann, 1999) to identify and remove erroneous localities and genuine

vagrants (i.e., singleton records far from established populations).

Migratory species with discrete breeding and wintering ranges or with

breeding ranges extending broadly out of the tropics were reduced to

their winter distributions (eBird, 2012; Howell & Webb, 1995; Schuch-

mann, 1999), which we considered more representative of their distri-

butions at our tropical testing localities (Guisan et al., 2006; Martínez-

Meyer, Peterson, & Navarro-Sig€uenza, 2004; Nakazawa, Peterson,

Martínez-Meyer, & Navarro-Sig€uenza, 2004). Non-migratory tropical

species with a history of long-distance dispersal had areas of known

dispersal included inside their training regions, but observations repre-

senting these motile individuals were excluded from the model dataset.

Questionable locality records were researched to determine whether

they were truly erroneous locality records or valid (i.e., substantiated,

or experienced and trustworthy observer) reports (eBird, 2012; M. J.

Anderson, personal communication 2014; M. Brady, personal commu-

nication 2014; M. G. Harvey, personal communication 2014; P. Hosner,

personal communication 2014; J. D. Wolfe, personal communication

2014; see aforementioned literature).

To provide independent testing data, 13 localities regarded as well

sampled (therefore providing information about true presences and

absences) were selected based on data availability and the amount of

effort (i.e., complete eBird checklists as of April 2015) associated with

each (eBird, 2012). Localities possessing high species richness and

extensive effort were preferred, with effort deemed a more important

metric for validating estimations. These localities were selected non-

randomly between 258 N and 258 S, with one locality per 58 band per

continent and two additional equatorial (i.e., within 1=28 of the Equator)

localities (Figure 1). These localities were restricted to the tropics to

focus on areas where the most species of hummingbirds occur and to

minimize geographical distortion from latitude on our model projec-

tions. Species lists for each locality were drawn from the eBird data

and existing checklists when available (see Arvin, 2001; Copalinga

Lodge, 2013; Costa Rica Gateway, 2015; Lees et al., 2013; Serra dos

Tucanos Birding Tours, 2015; Tropical Birding, 2005; Wilderness

Explorers, 2008). eBird occurrence data from an expanded c. 20 km cell

around localities were aggregated to represent a locality’s observational

data, with more recent (i.e., post-2013 download) data gleaned directly

from the eBird website (eBird, 2012; Vavrek, 2011). Two localities pos-

sess published checklists that may exceed the 20 km definition: Munici-

pio G�omez Farías, Tamaulipas, M�exico and Rio Cristalino (a.k.a. Alta

Floresta), Mato Grosso, Brazil. Municipio G�omez Farías was considered

acceptable for comparison because it occurs at a rather northern lati-

tude with few microendemics and rather homogeneous bird commun-

ities, and Rio Cristalino was considered acceptable because it is in a

climatically homogeneous lowland region.

All locality data within 20 km of test localities were removed prior

to modelling, in order to create absences for testing the models. This

action was performed to ensure that we had ‘true’ absences of each

species at our study localities for model training and testing. Species

for which there were fewer than five occurrences remaining after data

cleaning and preparation were excluded from the modelling process

(Pearson, Raxworthy, Nakamura, & Peterson, 2007). A full list of spe-

cies modeled (n5293) or excluded (n549) is in Supporting Informa-

tion Appendix S1, with codes and data available via www.github.org

(see Data Accessibility statement).

2.2 | Species modelling

Climate data were drawn from the BIOCLIM v. 1.4 dataset (covering

1960–1990) available through WorldClim at a spatial resolution of 2.50

(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). We used the layers

‘as is’ and refrained from transforming them into an equal area projec-

tion because all of our testing localities are in the tropics and the latitu-

dinal distortion is < 10%. Four ‘bioclimatic’ layers were used to

calibrate models: mean temperature of the warmest quarter, mean

temperature of the coldest quarter, precipitation of the wettest quar-

ter, and precipitation of the driest quarter. These four layers were cho-

sen because they represent the climatic extremes that often constrain

species distributions and because most other bioclimatic layers are

derived from different combinations of or are tightly correlated with

these variables (Root, 1988). Initial tests of ENMs using only these four

variables created distribution estimates that matched known distribu-

tions (Howell & Webb, 1995; Ridgely et al., 2005; Schuchmann, 1999;

Schulenberg et al., 2007).

FIGURE 1 A map of estimated species richness within the study
area, as derived from stacking M-restricted ecological niche
models. Test localities’ names and species lists can be found in
Supporting Information Appendix S2. The map was created with
QGIS 2.8.6 (Quantum GIS Development Team, 2017) using data
from NaturalEarthData.com
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Two training areas were used for each species to obtain alternative

predictions. In the first approach, the entire area inhabited by the Tro-

chilidae was used to calibrate and project models. This area was

defined as the area over which hummingbirds are known to have

occurred within recent geological history, including all of continental

North and South America, the Caribbean, the Juan Fern�andez Islands

and the Aleutian and Bering Sea Islands. Island archipelagos that do not

possess hummingbirds (i.e., the Canadian Arctic Archipelago, the Falk-

land Islands, etc.) were excluded.

In the second approach, locality data were overlaid on terrain base

maps in ArcGIS 10.2 (Environmental Systems Research Institute, 2011)

together with a world ecoregions layer (World Wildlife Fund, 2011).

These were used to identify breaks in habitat and ecological regions in

topographically homogeneous areas. For each species, we hypothesized

an accessible area (M) by using topography, ecoregions and known

occurrences (Sober�on & Peterson, 2005). We performed initial tests of

different calibration areas on Phaethornis striigularis to explore the effects

of training area extent. These tests indicated that overly broad training

areas produce errors that vary in effect from overfitting presence suit-

ability to drastically increasing commission error in inaccessible regions.

Conversely, extremely narrow training areas can overpredict or wrongly

predict distributions as a result of having identical environments for

drawing presence and absence localities. Restricting calibration areas to

regions bounded by significant abiotic barriers (e.g., large rivers, moun-

tain ranges) and known or hypothesized dispersal distances yielded

more accurate models and reduced these errors (Barve et al., 2011;

Owens et al., 2013; Royle, Chandler, Yackulic, & Nichols, 2012; Saupe

et al., 2012). Thus, in our study, Ms were constrained by deep valleys

(e.g., the Mara~non Valley), the crests of mountains (e.g., the Andes) and

other distinct features likely to act as barriers to species distributions

(e.g., the llanos of northern South America). We did not create multiple

Ms for each species to test the delimitation of M that performed best;

rather, with the idea of using hard biogeographical barriers whenever

possible, we created an M for each species with criteria as consistent as

possible (e.g., multiple species bounded by a river/mountain range were

assumed to have identical or near-identical limits at said barrier).

Although this sometimes resulted in less accurate range maps, it did

allow us to ‘batch process’ all species and look only at the effects of

restricting models to accessible areas. In uninterrupted lowland regions,

a c. 200–300 km buffer was used to approximate dispersal from regions

where a given species is known. The unique M regions for each species

were then used as the calibration and projection regions for modelling.

For both approaches, data layers were clipped to the same extent

as calibration regions in R 3.0.0 (R Core Team, 2015) using the pack-

ages ENMGadgets (Barve & Barve, 2014), maptools (Bivand & Lewin-

Koh, 2015), raster (Hijmans, 2015), rgdal (Bivand, Keitt, & Rowlingson,

2015), shapefiles (Stabler, 2013) and sp (Pebesma & Bivand, 2005).

Models were created using MAXENT 3.3 (Phillips, Dudík, & Shapire,

2004) within R 3.0.0 (R Core Team, 2015) using the packages dismo

(Hijmans, Phillips, Leathwich, & Elith, 2015) and rJava (Urbanek, 2013).

Five replicates of each model were conducted with no clamping or

extrapolation and with all the default ‘features’ used; the average raw

output of these models was saved. All models used the default number

of background points (n510,000), and the five replicates were com-

pletely random. We limited the amount to which we manipulated

MAXENT settings to ensure that we were truly looking at the effects

of restricting training areas to accessible areas. We used all points to

train the models because we created artificial absences (i.e., removed

all observations from our test localities) to test model performance.

Outputs were thresholded using fixed sensitivities of 99, 95 and 90%

to create binary outputs. There are arguments for maximizing the sum

of sensitivity and specificity in thresholding such predictions, but this

assumes equal weight for false positives (i.e., false presences) and false

negatives (i.e., false absences), which is debatable (Peterson et al.,

2011). Instead, fixed presence thresholds were chosen to reflect confi-

dence in data quality and comparatively higher certainty of presence

over absence localities (Liu et al., 2013; Peterson et al., 2011). Then we

performed extractions for 99, 95 and 90% thresholds to compare their

performance in predicting richness and validate our choice of threshold

based on data quality. Thresholding is a contentious procedure, but

unavoidable given our objective of obtaining presence–absence matri-

ces and lists. Moreover, as the range of values of the outputs of MAX-

ENT changes with the size of the training region, thresholding provides

a way of standardizing such outputs (Barve et al., 2011; Owens et al.,

2013; VanDerWal, Shoo, Graham, & Williams, 2009).

SDMs were successfully created using both approaches for 293

species of hummingbird, representing 85.6% of all described species (Gill

& Donsker, 2013; Supporting Information Appendix S1) and resulting in

two comparable presence–absence matrices. Within these matrices, all

species predicted as present in � 25% of grid cells in the 20 km

expanded test locality were predicted as present at that locality in the

final species list. These presence–absence matrices, their derived rich-

ness maps and their derived species lists were directly contrasted to

determine how altering only the geographical training area affects the

accuracy of list estimation. The full list of species predicted and observed

for each locality can be found in Supporting Information Appendix S2.

2.3 | Contrasting predictions methods

Predictions of the entire list of species (i.e., community composition)

were compared using two statistics derived from a confusion matrix as

defined by D’Amen, Dubuis et al. (2015). Both these metrics draw from

the number of true positives (tp; species predicted as present and has

been observed), the number of true negatives (tn; species predicted as

absent and has not been observed), the number of false negatives (fn;

species predicted as absent but has been observed), the number of

false positives (fp; species predicted as present but has not been

observed), and the total species pool (sp). These metrics are the predic-

tion success (p) and the Sørensen index (si), defined as follows:

p5
tp1tn
sp

si5
2tp

2tp1fn1fp

The overall success of generated lists to estimate gross richness

was evaluated using a completeness index (C), derived from the num-

ber of observed species (o) divided by the number of expected species
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(e) from the models (Hawkins, Norris, Hogue, & Feminella, 2000). An

ideal prediction would have a completeness index of one.

3 | RESULTS

Comparing species presence lists derived from 2013 and 2015 data

revealed that twenty-two ‘false predictions’ have been validated as

‘true predictions’ (Supporting Information Appendix S2). Given the

amount of data added, only the 2015 data were used to assess model

effectiveness. Values presented here include their 95% confidence

intervals, appended with ‘6’.

Our initial comparisons of threshold performance via the com-

pleteness index of M-derived models found that 90% thresholds

underpredict species richness (C51.38), whereas 99% thresholds over-

predict species richness (C5 .73). The best average completeness index

was recovered for the 95% threshold (C5 .90); thus, all results dis-

cussed hereafter refer to the 95% threshold.

3.1 | Comparing model performance

The prediction success of models that were and were not constrained

by accessible area hypotheses was significantly different (Wilcoxon rank

sum test, W51, p< .001), with the prediction success of constrained

models (p5 .956 .01) being greater than that of unconstrained (i.e., with

no dispersal limitations) models (p5 .716 .08; Figure 2). Sørensen indi-

ces indicated that unconstrained models differed significantly from their

constrained counterparts (Wilcoxon rank sum test, W52, p< .001),

with M-constrained models providing better estimates of community

composition (si5 .776 .06) than unconstrained models (si5 .406 .05;

Figure 2).

Regressions of the observed versus predicted number of species

(i.e., the completeness index, C) further illustrated the overpredic-

tions present in unconstrained models. Unconstrained models yield

a slope of .276 .03 (adjusted R25 .96), indicating consistent over-

prediction of species richness when these ENMs are used. Con-

versely, M-constrained models predicted species richness with a

slope of .776 .13 (adjusted R25 .93; the inverse of C is shown in

Figure 3), much closer to the value that would characterize a perfect

prediction. Both regressions had high adjusted R2 values, and both

reflect a clear relationship between the number of species known at

a locality and the number predicted. Despite this, M-constrained

models were far more accurate at predicting actual species richness

than unconstrained models.
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4 | DISCUSSION

This study is a case of a ‘predict first, assemble later’ strategy to esti-

mate the composition of communities (D’Amen, Rahbek, et al., 2015),

but it is the first large-scale case where stacking was constrained by

hypotheses about species dispersal and accessible regions in geograph-

ical space. As such, it constitutes a novel and practical approach to

stacking as a method to model the geographical pattern of species

composition (Peterson et al., 2011; Sober�on, 2010; Sober�on & Peter-

son, 2005). Lack of detailed data on dispersal has been cited as a major

factor hindering a more widespread use of process-oriented SDMs

(Hortal, de Marco, Santos, & Diniz-Filho, 2012), but our method is less

demanding because there is no need to calculate dispersal kernels.

Nevertheless, stacked SDMs constrained a priori in their geographical

extent perform better in anticipating geographic patterns of observed

species richness than models that lack dispersal-based constraints

(Barve et al., 2011; Guisan et al., 2006; Sober�on, 2010; Sober�on &

Peterson, 2005). Restricting the calibration area to a species’ M creates

more accurate predictions of the species’ true occupied geographical

distribution (i.e., the occupied area), increasing the predictive power of

SDMs in environmental space and eliminating overlap of allopatric

species complexes (Figure 4; Barve et al., 2011; Owens et al., 2013;

Sober�on & Peterson, 2005). Furthermore, these models reduce bias in

ENMs and their derived SDMs by removing regions in which estima-

tions would be created via extrapolations from known environmental

tolerances (Owens et al., 2013; Saupe et al., 2017) and offer improved

confidence in individual model performance.

These factors are further reinforced by the consistent overpredic-

tions present in unconstrained models in many montane systems,

where similar regions with similar species assemblages are often sepa-

rated by large canyons or lowlands. Enforcing dispersal limitations

results in a better reflection of the occupied niche not only by restrict-

ing abiotic variables, but also by implicitly accounting for some biotic

interactions by limiting the environments in which species can co-

occur. In instances where there is interest in projecting models, our

method provides a way to assess a species’ occupied niche accurately

in the present, in order to estimate distributions in other geographical

and temporal scenarios better. The performance of these models

rejects the notion that an unconstrained biogeographical model of the

invasible niche is appropriate for creating a single training area for mul-

tiple evolutionary units and highlights the importance of this often-

neglected part of the modelling process.

Likewise, these restrictions have resulted in more accurate predic-

tions of community composition at test localities. Predicted distribu-

tions are more constrained and narrower within the species invasible

area when Ms are used as training areas (Figure 4). Unconstrained

models that incorporated inaccessible regions within the training region

possessed a large amount of error and had a lower predictions success

than M-constrained models. Much of this error was commission error

derived from species that are ecologically similar to test localities but

from different biogeographical realms.

M-derived presence–absence matrices still possess more commis-

sion than omission error (i.e., generally result in more false presences

than false absences when predicting community compositions), but

have much lower rates of commission error than unconstrained models.

Commission error is usually considered preferable for community com-

position estimations, as it is less likely that species of conservation con-

cern will be excluded from the derived species list. Despite this, both

commission and omission can be harmful to conservation efforts; fur-

ther reducing commission error in the future is a necessity to ensure

the proper allocation of conservation funds and for the creation of

effective reserves (Loiselle et al., 2003). In all regions for which predic-

tions of community composition are made, a certain amount of survey

work is also required to confirm the model’s accuracy and identify pos-

sible errors (Pineda & Lobo, 2009).

Although our M method appears to be promising, much work

remains to be done in refining and identifying objective definitions of

M, perhaps on the basis of geographical features. This work is in pro-

gress. Our evaluation methods did not explicitly test for differences

between restricting the training area a priori or post-processing by clip-

ping the area of the model projection. The effects of restricting the

training area probably depend on the SDM algorithm used, something

that we will explore in detail in the future. However, we suspect that

M-trained models result in more spatially restrictive SDMs than models

FIGURE 4 A comparison between unconstrained (i.e., modelled
throughout North and South America) and M (i.e., accessible area,
indicated by dotted line)-constrained species distribution models for
Coeligena coeligena. Red areas indicate areas in which the unconstrained
model predicted species presence, blue areas those in which the
M-constrained model predicted species presence, and purple areas the
area in which the models overlap. Points indicate presences used to
create both models. The map was created with QGIS 2.8.6 (Quantum
GIS Development Team, 2017) using data from NaturalEarthData.com
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trained in an unrestricted area. Unfortunately, for many species, the

density of testing localities necessary for explicitly analysing the effects

of training areas within a species’ individual SDM may be insufficient;

this should be tested in the future with well-sampled species for which

high-resolution data are available.

4.1 | Effects of effort

In this study, three localities were underpredicted in terms of species rich-

ness whenM training areas were used: Municipio G�omez Farías, Tamauli-

pas, M�exico; Rancho Naturalista, Cartago, Costa Rica; and Río Cristalino,

Mato Grosso, Brazil, which falls within the well-surveyed Alta Floresta

region (Lees et al., 2013; Zimmer, Parker, Isler, & Isler, 1997). All of these

localities have seen an enormous amount of effort (> 140 complete eBird

checklists per centroid) and possess official published checklists (Arvin,

2001; Costa Rica Gateway, 2015; Lees et al., 2013). False negatives at

these locations are likely to be related to three factors: occasional

migrants and vagrants that occur in adjacent regions but that are not resi-

dent at the test locality (e.g., Amazilia rutila, Rancho Naturalista), highly

localized species that were predicted at a locality but fell below the 25%

threshold (e.g., Atthis heliosa, Municipio G�omez Farías), and genuine pre-

diction errors by the models (e.g., Topaza pella, Rio Cristalino).

Conversely, many overpredictions appear to be attributable to

insufficient survey effort. Many validated predictions were in regions

of topographic complexity, suggesting that survey effort is concen-

trated in accessible regions, rather than covering the entire site (Ponder

et al., 2001). At Reserva Natural de las Aves (RNA) Reinita Cielo Azul,

Santander, Colombia, six predictions were confirmed (Supporting Infor-

mation Appendix S2); many of the remaining false-positive predictions

refer to montane species perhaps yet to be found in rugged areas away

from the reserve’s access points (e.g., Ensifera ensifera). Future research

on these metrics is needed to examine how much overprediction is

related to sampling effort.

4.2 | Improving upon M SDMs

Many factors that limit species distributions in the Neotropics (e.g., ele-

vational effects on metabolism, biotic interactions and specificity for

different habitat types) were not accounted for in these basic ecologi-

cal models (Altshuler & Dudley, 2002; Buermann et al., 2011). Despite

acceptable overall model performance using only four BIOCLIM varia-

bles, several species that are limited by other factors had poorly per-

forming ENMs. One glaring example is Leucippus chlorocercus,

restricted to riparian scrub along large rivers in western Amazonia

(Ridgely & Greenfield, 2001; Schuchmann, 1999; Schulenberg et al.,

2007): this species’ SDM does not conform to rivers within the region

and omits the test locality from which the species is known to occur

(Sacha Lodge, Sucumbíos, Ecuador).

Unique biotic relationships can be used to refine SDMs further.

Hummingbirds are well known to be associated with certain species of

flowers (e.g., Heliconia), and many possess unique bill morphologies

reflecting these close relationships (Schuchmann, 1999; Stiles, 1975).

Furthermore, interactions between species may also be restricting dis-

tributions, as many erroneous predictions overlapped with related allo-

or parapatric taxa (e.g., Coeligena coeligena versus Coeligena wilsoni in

the western Andes). More research into how to mitigate these contin-

gencies is necessary to create better models of species distributions,

especially in areas of parapatry.

Initial studies have shown that using remote-sensing data, such as

the normalized difference vegetation index (NDVI), can improve stacked

SDM models originally based solely on climatic data layers (Cord, Klein,

Gernandt, P�erez de la Rosa, & Dech, 2014; Jiang et al., 2014). These data

show great potential for species with poor dispersal abilities (e.g., Pinus),

but are extremely difficult to correlate spatio-temporally with motile ani-

mal occurrences. Even when this is accomplished, restricting these addi-

tional layers to the regions that the species can explore is still imperative,

and using such data without caution may result in egregious errors.

Others have mathematically taken into account spatial heterogeneity in

species occupancy and dispersal (De Marco, Diniz-Filho, & Bini, 2008);

using these approaches in conjunction with an M adhering to hard bio-

geographical barriers for a species could greatly improve SDM predictions.

We therefore conclude that the efficacy of ecological niche models

can be improved by incorporating dispersal limitations into models, a

priori. These limitations should be based on known or estimated disper-

sal abilities combined with biogeographical barriers to create realistic

training areas. In our case study, these methods improved distribution

prediction, richness estimation and community assemblage estimation.

Future work using ENMs and subsequently derived SDMs should

incorporate known limitations to species accessible area in geographi-

cal space to reflect patterns found in nature better and thereby

improve models’ predictive performance.
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